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Abstract: Wind field analysis from synthetic aperture radar imagesnalthe estimation of
wind direction and speed based on image descriptors. Inptper, we propose a frame-
work to automate wind direction retrieval based on wavegodnposition associated with
spectral processing. We extend existing undecimated watr@insform approaches, by in-
cluding a trous with B spline scaling function, in addition to other wavelet bagessabor
and Mexican-hat. The purpose is to extract more reliablectional information, when wind
speed values range from 5 to 10 Ths Using C-band empirical models, associated with the
estimated directional information, we calculate local dvepeed values and compare our re-
sults with QuikSCAT scatterometer data. The proposed apprbas potential application in
the evaluation of oil spills and wind farms.

Keywords: SAR; Wind Direction; FFT; CMOD4; wind speed.

1. Introduction

Oceanic images acquired by Synthetic Aperture Radar (SARgmgsenclose information of geo-
physical parameters of the marine environment. In padicahicrowave sensitivity to surface roughness
enables exploitation of SAR imagery for accurate surfagedveistimation (direction and speed). SAR
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image analysis is a powerful tool to investigate atmosghamd marine processes at spatial scales, not
attained by other space borne sensa}slh addition to SAR systems, radar scatterometers allosanc
surface measurements and can be especially useful in casee e wind vector retrievals by SAR
are inaccurate. Satellite-based wind mapping is a helpfll for quick estimates of the wind condi-
tions. This combination has proven to be more efficient th@nind climatology method, based on at
least one year of accurate wind measurements. There ageetliffapproaches and applications of SAR
images, we discuss some of them in this section and emphdsizthe range definition of wind speed
is quite controversial in the literature. Next, we will shemw our method fill in the gaps of current
available approaches.

Portabelleet al. [2] proposed to retrieve wind vectors by means of combining SARR and numerical
weather prediction models as an optimal inversion methadhfwove SAR wind vectors estimation.
They [2] adopted that low winds are under7s—* when deriving wind fields from ERS-2 SAR images.
Cameroret al. [3] combined SAR and scatterometer data to characterize \aimasf and their potential
energy output around coastal areas. This investigatioluded the method in2] as an alternative
inversion scheme for wind vectors retrieval from SAR baekigr, using a Bayesian approach to combine
trial wind vectors and weather predicted data. The methsdohaven to be adequate to both moderate
and high winds. The range of strong (high) wind speeds aaugtd [4], is higher than 1ins*.

Oil spill monitoring often use SAR images from the ocean ttraot wind vectors from streaks on
the sea surface. From the wind vectors, it is possible tautate the wind speed, which influences the
visibility of slicks on the sea surfac&][ They observed that natural films are indistinguishaldenfoil
spills if the range of wind speeds is out of the interval 3 to/d0 . However, Solbergt al. [6] noticed
a high probability of false slicks for wind speeds less than&!; such analysis also reported fewer
dark spots from local low-wind areas when in the range beatvéeand 10n.s~!. Pavlakiset al. reported
in [7] that under low wind speed conditions, such as 3 tas7 !, oil spills could yield detectable radar
backscattering contrast signals. These authors assuraechddium winds are within the interval of 7
ms~! to 13ms~! and high winds are above 13s~!.

Fichaux and Ranchir8] calculate the orientation of wind streaks from SAR imaggsising a spec-
tral domain method which consists in applying a windowedrfesdransform to the wavelet coefficients
referring to a given radar image to recover the wind directid@his spectral approach used the fast
Fourier transform algorithm (FFT) to search for the domtrdirection of wind streaks. These direc-
tions are based on the position of the two maximal of the Eowpectrum computed on a second-level
wavelet coefficient imaged].

Instead of retrieving wind parameters using spectral nusthd is possible to use spatial domain
algorithms [LO, 11], as the decimated wavelet transfori, [which allows feature extraction from local
histograms of the image gradient direction. Among sevepatial domain methods, a widely-used
method is the local gradient (LG) 2], capable of retrieving wind direction using local gradsederived
from smoothed amplitude images. According id][the LG algorithm is less efficient and tends to
fail in areas characterized by a low-speed wind field wheeeetftimates tend to be significantly non
homogeneous. The main limitation of spatial algorithmshis dependence on wind rows associated
with atmospheric boundary layer roll vortices in the SAR gaaan approach that often requires human
intervention.
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Ceccarelliet al. [11] proposed a texture based approach for wind detection in¢kan and showed
results that are more robust to noise than standard andiaptraG algorithms. This method explored
the advantages of both the spectral method and the locakegtatdy using a localized filtering-based
approach, combining both the spatial domain and the fre;yudamain. It consisted in extracting the
preferred orientation of textural patterns in the SAR imeagber than from its respective energy varia-
tion.

Du et al. [7] introduced a method in the wavelet domain for wind directietrieval, which could
guantitatively describe the image streaks through textfoemation detected from the vertical wavelet
coefficients within a Haar wavelet decomposition. Moreptlegy have suggested that different wavelet
basis functions may lead to slightly different results.

These previous algorithms consider wind speed estimatan SAR images, including scatterom-
eter wind retrieval models such as the C-band model (CMODgséor vertical polarization radars in
transmit and receive (VV) mode, which requires a well-aalied image. The wind direction is an im-
portant input parameter for these models and it is used,in3-15] for wind speed estimation from
SAR images. Our paper assesses the algorithms by using maedl sesults from three CMOD-based
models available in the literature and presents compagswng them with the QuikSCAT measures.

We extend the method introduced by Fichaux and Ranchij,ibby improving the algorithm to detect
wind direction on coastal region with wind speed within thage of 5 to 10ns~!. Our algorithm takes
a SAR image as input, decomposes it by using wavelet furgtivansforms the wavelet coefficients
into their spectral version and finally detects peaks in reegsum domain to recover the orientation of
streaks. The motivation for choosing undecimated wavéetgexican-hat presents suitable selectivity
in position and the Gabor wavelet can be tuned to detecttaired features. Our algorithm estimates the
wind direction using the Fourier spectrum, although the eleivtransform provides good localization
in both spatial and spectral domains. Our method takes tiwvelatacoefficients of the decomposed
SAR image as input to peak detection using spectral energye Wt attenuates the undesirable high
frequencies and maintains the main spectral energy, ldgseendicular to the orientation of streaks
[16]. The image decomposition by wavelets enables detectiaviraf streaks at a certain spatial scale
and later identification of wind orientation and wind spestireation.

This paper is organized as follows: Sect@ndescribes the SAR data, Secti®npresents the basic
concepts of wavelet transforms to retrieve wind directibosn satellite SAR data. It also describes
models for wind speed estimation from SAR images with HH poédion. In Sectior., we compare
the results from processing SAR images using different oustho extract wind vectors with satellite
scatterometer data. Discussions about the contributipnagfosed framework are in Sectién

2. SAR Images and QuikSCAT Data

We address SAR images from the RADARSAT-1, ENVISAT and ALOS BAR satellites, which
images were acquired over the coast of Rio Grande do Norte (Bfdgil. The Canadian satellite
RADARSAT-1 acquires SAR images over the oceans on a continosis to support measures of geo-
physical parameters such as ocean surface winds. The SAétsgboard the RADARSAT-1 satellite
[17] is a right looking radar, which acquires images at C-bangl GHz) and at horizontal (HH) polar-
ization in transmit and receive modes. It operates at moel@naidence angle betwedn® and59°, a
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Figure 1. SAR images over the coast of Rio Grande do Norte, NortheastilBréa)
RADARSAT-1 SAR, acquired on September 29, 2006 with HH poléiora (b) Extract
of the SAR image (4096x4096 pixels) referenced in latitusidlangitude (decimal degrees)
representing 51.2x512mn. (c) ENVISAT ASAR, acquired on February 01, 2005 with HH
polarization. (d) ALOS PALSAR, acquired on July 20, 2007 witH polarization.
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swath width of up t&»00 km and with a range of 8 to 10& in resolution. RADARSAT-1 images were
acquired in the standard mode, beam mode: SAR Standar)Z;m swath width. The SAR image
displayed in Figurdawas captured on Septemli¥r, 2006, at8:07 a.m, with a radar incidence angle of
27.291° and with pixel size ofi2.5 m by 12.5 m, corresponding to a region of the coast of Rio Grande
do Norte (RN), Brazil. Figurdb presents the region of interest (ROI) extracted from the RRSAT-1
SAR image displayed in Figurka
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The advanced SAR (ASAR) aboard the European satellite ENVI§#erates in the C-band (5.34
GHz) and, in contrast to the RADARSAT-1 satellite, at bothicait(\VVV) and horizontal (HH) polariza-
tion in transmitting and receiving. For the following stul$AR data were acquired at HH polarization
in transmitting and receiving modes. Figute shows the ENVISAT ASAR image which covers the
same area. This SAR image was captured on February 01, 2@@%iipolarization.

In January 24, 2006, the Japan Aerospace Exploration Agenryched the Advanced Land Ob-
serving Satellite (ALOS), which carries the Phased-Arragdnd Synthetic Aperture Radar (PALSAR).
PALSAR is an active microwave sensor, which is not affectgavbather conditions and operable both
daytime and nighttimel8]. PALSAR is a full polarimetric (multi-polarization) systn which acquires
images in HH, HV, VV and VH polarization. The ALOS images (elgigure 1d) were acquired in
the PALSAR Fine Single, which cover are&&70 km with pixel size of12.5 m by 12.5 m and HH
polarization.

Table 1. The set of SAR images using a 12.5m pixel size.

wind
Conditionst
RADARSAT-1| Standard 7| 39713| 2003/06/14 07:54 M/9.1
RADARSAT-1| Standard 2| 39756| 2003/06/17 08:09 M/6.3
RADARSAT-1| Standard 7| 56863| 2006/09/26 07:55 H/11.2
RADARSAT-1| Standard 2| 56906| 2006/09/29 08:071 M/9.8
RADARSAT-1| Standard 3| 56906| 2001/02/03 20:42 M/6.1
RADARSAT-1| Standard 6| 56906| 2001/02/07 07:53 L/4.0

Satellite Mode Beam| Orbit | Image Time UTC

ENVISAT IMG 11779| 2004/06/01 00:39  M/9.4
ENVISAT IMG 15286| 2005/02/01 00:38  M/9.8
ENVISAT IMP 19566| 2005/11/29 00:41 H/11.0
ENVISAT IMP 25342| 2007/01/04 12:13  M/6.9
ALOS FBS8 7905 | 2007/07/20 01:14 M/10
ALOS FBS8 12602| 2008/06/06 01:13  M/8.2
ALOS FBS8 18641| 2009/07/25 01:18 H/10.5
ALOS FBS8 19064 | 2009/08/23 01:16  M/9.7

1L, low winds (< 5ms~!); M, moderate wind (5ns~! < v < 10ms~1);
H, high winds & 10ms~!). Mean value of speed winds provided by QuikSCAT.

Table 1 summarizes the SAR images information, regarding six RADAR$AmMages, four EN-
VISAT images and four ALOS PALSAR images, used to validate mew wind-retrieval algorithm
throughout this paper.

A different source of information came from the satelliteiKBCAT, launched on June 19, 1999. It
contains the instrument SeaWinds, which measures nefaeswind speed and wind direction2atkm
resolution. The wind accuracy from QuikSCAT is stated telemns— in wind speed and0° in wind
direction. This accuracy depends on the distance from tbeeshvind speed range and atmospheric
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Figure 2. (a) QuikSCAT wind direction and wind speed estimation on Seybier 29, 2006.
(b) QuikSCAT over ROI.
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conditions [L9].

The QuikSCAT daily data is a matrix of dimensions 1440x72@x4xhere the first index represents
longitude (from0° to 360°), second index, latitude (from90° to 90°), third index, UTC time, wind speed
(ms~1), wind direction (degrees) and rain flag, respectively, fannth index, ascending or descending
passes. Figureashows QuikSCAT wind vectors over Atlantic, Tropical, Souttracted on September
29, 2006. The first cell of the matrix is at longitudd 25° E and in latitude—89.875°, in the 0.25° x
0.25° space resolution. The QuikSCAT wind speed is relative to ghteif 10 m above sea level and
to a neutral atmospheric stabilit2(]. The wind direction data follow the oceanographic coni@amt
indicating the direction the wind blows, and are used astimauables in C-band models for calculating
the wind speed.

Figurelband Figure2b show our SAR and QuikSCAT data, used to retrieve the directrmhspeed
variables over the RN coast in different dates. Accordindheodcatterometer measurements, the wind
speeds in these areas ranged from 4 tek1! (see Tabld). From the available data set (about 14 SAR
images) 5 images were selected with time difference betweerd 12 h, 4 with approximately 4 h, and
3 with less than 1 h. The interpretation of QuikSCAT regionriérest requires geographic coordinate
transformation according to Equatiodsnd3.

longitude = 360 — longitude (1)
longitud 12
column — ongitude 4+ 0.125 @)
0.25
latitud 12
o — atitude + 90.125 3)
0.25

where the longitude and latitude variables are given inekegr The acquired matrices of QUIKSCAT
(wind direction and speed) are used to evaluate our direcgéisults.
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3. Methods

Wind field retrieval from SAR images requires both wind difee and speed calculation. Such
information can be acquired from one or more sources as: €asarements of other instruments (scat-
terometer, buoys, etc.), (b) meteorological models, (opwnduced streaks if evident in the SAR images
or from intelligent image processing remote systems. Wewestandard methods used for comparison
to the proposed approach: we summarize two methods to estimiad direction (Subsectiorg1. and
3.2), both using wind-induced streaks from SAR images. Sulmest3. summarizes C-band models
to estimate wind speed. Finally in Subsecti®d, we present undecimated methods, describing the
foundations of the proposed approach and our contributmpsevious work.

3.1. The WDWaT method for wind direction estimation

Wind direction retrieval is based on the measurement ofitexteatures from SAR images of the
ocean. Each texture feature is a scalar value, computed &revhole image or a sub-scene, which
characterizes the grey-level variation within the imméealiarea. The wind direction estimation from
wavelet transform (WDWaT) is based on decimated wavelestoams R1]. Du et al. in [7] introduced
this approach for estimating the relative strength of theedis in SAR images, by deriving the maximum
of the standard deviations of the mean cross secfidf#i)M) as a detection criterion.

The WDWaT algorithm provides a multiscale texture analysisidentifies subscenes of weak direc-
tional features. It can quantitatively describe imageadtsehrough the standard deviation of the mean
cross section{tdM) of vertical details within a wavelet decompositior].[ The cross-section mean
of the area of interest is obtained by computing the mearevalieach column in a vertical direction.
When the image is rotated througR0° with a given rotation interval, the mean value of the cross se
tion at different angles are obtained (rotation ang#¥9. The choice of. depends on the accuracy of the
required estimation.

The M StdM and the average of the standard deviations of the mean @ossrs(dvStd M) of these
curves are calculated as follows:

M StdM=max[StdM (1), StdM(2),--- , StdM(n)]
AvStdM=average[StdM (1), StdM (2),- - -, StdM (n)]

whereStdM (i) is the standard deviation of the mean cross section for-theotation angle. The factor
K to describe the strength of the directional featui@ss given by:
M StdM
= Jvstant = " “)
The factorK is fundamental to determine the optimal spatial scale ferdinectional estimation of
texture features. Alsdy can be used to make quality-control decisioris The higher the value of,
the stronger the directional features in the image.

3.2. The LG-method for wind direction estimation

Koch proposed inJ2] the local gradient method (LG) which divides an image intbb-émages,
depending on the space grid over which the wind is requetited;image operators are applied to the
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images to produce a map of valid points, on which the locadigra directions are computed. The LG
method consists of three steps to derive wind direction.hénfirst step, the SAR image is smoothed
and reduced to pixel size of 100, 200, and 400From each of these images, local directions, defined
by the normal to the local gradient, are computed leaving0d ambiguity. In the second step, all the
pixels that are effected by non-wind-induced features aamsked and excluded from further analysis.
Finally, only the most frequent directions in a predefined gell are selected from all of the resulting
directions R2]. The wind direction, assumed to be parallel to the windadtse is thus perpendicular
to the direction of the gradient. The direction of the gratlis the direction of highest increase of a
streak [L3]. The LG method has in principle the advantage of being maealized, allowing the wind
direction estimation at higher resolution. However, thespnce of noise requires large windows for the
local histogram in order to obtain reliable estimét&][ The algorithm may extract features not caused
by wind and ignore these points while working in the spat@hain by evaluating the local gradients.

3.3. Wind Speed Retrieval Models for Assessment and Coropdtigposes

We estimate wind speed from RADARSAT-1 data using three C-baydbis: CMODA4 23], CMOD-
IFR2 [24] and CMODS5 P5, 26]. The QuikSCAT scatterometer is well collocated in time WRMADARSAT-
1 orbit, and ERS-2 is close to the ENVISAT orblig. This paper deals with CMOD models, therefore
wind speeds are estimated from RADARSAT-1 images. As the AL&&Ige operates in L-Band, wind
speed estimation is not performed for the ALOS PALSAR images

The algorithm based on the CMOD4 model was originally dewdowith three types of Earth ob-
servation data: the scatterometer data (ERS-1), the wirtdngsitom the European Centre for Medium
Range Weather Forecasts (ECMWEF) for surface wind analysighendind and wave information from
the National Oceanic and Atmospheric Administration (NQAYWd and wave buoys, respectiveR.
The CMOD-IFR2 is very similar to the CMOD4 model, and most aldqonis for C-band SAR wind re-
trieval are based on thertg).

The precise wind direction information is necessary tonestie accurate wind speed when using
CMOD models and Equatiorb). Under certain circumstances, it is possible to extracidvdirection
directly from SAR images. In this paper we provide a set ofegikpents to assess the effect of wind
direction in the wind speed estimation by using CMOD models.

For wind speed retrieval, an empirical model function edathe normalized radar cross section
(NRCS) of the ocean surfaeg to the local near-surface wind speedwind direction versus antenna
look direction®, and incidence angke The general form of the function is given by

0, = BO(1 4+ Blcos(®) + B2cos(2®))? (5)

where B0, B1 and B2 are coefficients that depend on the incidence angle, winedspadar frequency
and polarization angd € R. For the C-band, these coefficients were determined emipyrinaevaluating
ERS-1 data, which operates at the C-band with VV polarizatiod,wind fields from the ECMWFL].
These functions are applicable for wind-speed retriewahfi/V-polarized SAR images. The CMOD4
and CMOD-IFR2 have been applied successfully to ERS-1 and ER&@eis 16].

Particularly RADARSAT-1, the SAR system operates at C-bandnlitit HH polarization, then the
CMOD models cannot be directly used as they are acquired. H#ppens due to, decrease as the
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incidence angle increases and the increasing wind spesigiénto the error from the wind direction.
Thompson, Elfouhaily, and Chaprod] derived an empirical expression for the polarizationaati
to obtain an approximate form for the HH polarization backtr from RADARSAT-1. This hybrid

expression is given by:

O'HH

PR="% (6)

wherec!’ ando!Vare the HH and VV-polarized NRCS, respectively. Differ®mR functions have
been suggested in the literatuds8] 24, 28]. We obtained the wind directions from SAR images with
the spectral algorithm and the values are used as inpute t6MOD models. Next, we compare these
results with those computed from QuikSCAT.

3.4. Undecimated Wavelets

Undecimated wavelet transforms (UWT) or stationary wavikatsform is a shift invariant trans-
formation, relevant to detect wind direction in SAR imag&¥e use the UWT to decompose a SAR
image into wavelet coefficients to emphasize details iredsifit scales of the image. The wavelet coef-
ficients are the input to the spectral method, an algorithmwatoulate the Fourier transform, followed
by the identification of the maximum values in the Fouriercspen. The next sections present different
versions of the UWT algorithm, using different basis funietio

In UWT decomposition the number of the wavelet coefficientssdwot shrink between the transform
levels. This additional information can be very useful foe better analysis and understanding of the
signal properties. The translation-invariant propertyhef undecimated wavelet transforms is important
in feature-extraction applicationg9], therefore we use it for streak detection in this paper.

(A) The a Trous Wavelet Transform

Thea trous (with holes) algorithm decomposes a signal withobhsampling, i.e. no decimation step
is undertaken and in each projection only the filters areetll@9-33]. This transform was successfully
used by Fichaux and Ranchi][over a triangular function. Our paper includes the Mexibah and
Gabor undecimated wavelet transforms andAhespline basis.

Thea trous algorithm allows the separation of low-frequendgrimation (approximation) from high-
frequency information (wavelet coefficients or detail ¢ments). This UWT can be interpreted as a
frequency decomposition with each set presenting a diffespatial orientation. According to Bijaoui
et al. [33], two scaling functions lead to piecewise linear interpiola the triangular function and the
Bs-spline.

The main reason to choose tadrous algorithm for this application is the informatiomuadancy
between decomposition scales observed in the graduairgeffect inherent to it.

This algorithm consists in convolving the original signglk), with a filter h which is interpolated
by 27-1 zeros at each decomposition scaleThe most common filters in the a trous algorithm are
the triangular function and thB;-spline function B3]. The reconstruction of the original signglk) is
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obtained by adding the last smoothed signalk) with the set of wavelet coefficient84],

N
s(k) = sn(k) + > w;(k) (7)
j=1
whereN is the number of all wavelet scales.
(B) The Gabor Wavelet Transform

The Gabor wavelet is a complex-valued wavelet which obtie®ptimal localization in spatial and
frequency domains, simultaneously. Furthermore, the Gahwelet is directional and capable of tuning
to specific frequencies, thus allowing it to be adjusted fiirak enhancement and orientation detection.
A 2-D Gabor functiong(x, y) is defined as3s):

(z—a )2 (y—1 )2
g(:z: y) — 1 e— {ﬂ<4ggo*+y—'(%*>} e[i(€oﬂ:+y0y)] (8)
7 2m0 0y

where(zg, yo) is the center of the spatial domain afdd, v, ) is the optimal spatial frequency of the filter
in the frequency domain. Here, ando, are the standard deviations of the modulated Gaussian along
x andy axes.

(C) The Mexican-hat Wavelet Transform

The 2-D Mexican-hat wavelet function is widely used for zerossing multiresolution edge detection
[36]. Itis defined as37]:

—
ax

o) = - 7Py esp (-5 ) ©)

2
wherez gives the two-dimensional coordinate of a pixel arid a scale parameter which also works as
the sample period of the Mexican-hat function. In spatiafiency domain, it is written as:

~ — - —
k.k

Ou(F) = (F Bl 77) (10)

where k& represents the 2-D spatial-frequency variable a@sdhe inner product.

The 2-D Mexican-hat transform is an efficient band-pasg fittiten used to separate different scales
in the image to show their relative phase/location infoiorat These characteristics make the 2-D
Mexican-hat wavelet transform a strong candidate methdtiérdetection of wind streaks from SAR
images.

3.5. Proposed Spectral Algorithm for Wind Direction Estiioa

Our method encompasses the undecimated wavelet transfatma trous (Bs-spline), Gabor and
Mexican-hat, as illustrated in FiguBe We extend the algorithm ir8] by using other wavelet transforms,
which have the potential to improve the streak detectionltgs

The spectral method extracts the wind directions from SARges, by applying a windowed FFT
to the wavelet coefficient image to model the wind waves. Tgeesal algorithm considers successive
sub-images of the second level coefficient image. The fivell lef wavelet coefficients cannot be used
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Figure 3. Algorithms under investigation for wind direction detecti proposed algorithms
(top and center) and the Fichaux and Ranchin’s algorijrntbjottom).

WT
Mexican-hat
SAR WT Wavelet Local FET Local FET Direction Wind
. - coefficients |—» . . . direction
image Gabor 1 Jovel computation image extraction image
WT
a Trous

for our analysis because it characterizes the featuresanvijpatial scale of 100-200n8][and due to
noise. For a precision image with 100pixel size (200n resolution), the image of wavelet coefficients
characterizes features with a spatial scale of 200+400n many cases the wind-induced waves are
clearly visible in SAR images as almost linear patterndedalind streaks, representing scales between
200 and 1600n, where wind-induced phenomena aligned with the wind divecare most likely to
occur [38]. The position of the maximum Fourier spectrum calculatexinf the wavelet coefficients
(second level) indicates the wind directions.

We apply a local FFT to a SAR image to extract the wind directioth a grid size o250 x 250
pixels, equals to @5 x 25 km grid cell. This grid cell corresponds to the QuikSCAT resiolnt For
assessment purpose, we compare the wind direction infamestimated by the FFT algorithm with
two algorithms available in the literature and describetthénnext section and also with QuikSCAT data.

Figure 4. (a) Original SAR imag€d. (b) Image of the dominant directions of the induced
streaks in the ocean detected by the Gabor wavelet.

(a) Original Image. (b) C image.

We estimate direction with Gabor wavelets by rotating thé@dunction (Equation8) at steps
of 10°. There are a total of/ different frequencies an®y different orientations, resulting in/ x N
coefficients for each image pixet, y). Equations11) and (L2) refer to the rotation property, as follows:
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gmn(@,y) = (2, y/) (11)
wherem € [1, M],n € [1, N] andg(z, y) refers to EquatioB. The rotation matrix is given by
! _ CO&an sind, || © ’ GHZT. (12)
Y —siné, cosf,||y N

By convolving an imagd (x, y) with Gabor wavelets, the Gabor transformed image can beedkfin
as:

esyomon) = [ 1G99 — o'y~ )is'dy. 13)
In this paper we are interested in the response with the marimagnitude over all possible orienta-
tions, namely:

~

T = max | I(xz,y,m,n) | (14)

After calculating thel” image with the maximum magnitude response in all directiaresobtain the
coefficient image”' by subtractingl” from I, as illustrated in Figuréb. Finally, the wind direction
estimation is calculated by applying the FFT to im&geprevious derived from a set of imagettes of 25
X 25 km.

Our approach of the Mexican-hat wavelets for wind directietrieval consists in convolving the
function in Equation g) with the SAR image, followed by the difference between t#&kSmage and
the convolution results. Then, the spectral algorithm cot@pthe wind direction from the imagettes of
the coefficient images.

4. Results

This section presents the outcomes of 7 different techsifprewind direction calculation. We com-
pare 3 standard methods and our 3 proposed approaches,ngyQusikSCAT direction values as the
gold standard. Next, we calculate wind speeds, using oelwihd directions obtained from FFT-based
methods, again checking the agreement with the results @aikscat speed values.

We test the algorithms with a set of fourteen SAR images, Wwhéfer to the same area, laying
out betweent°30'S and5°40'S in latitude and35°50'"W and37°00'WV in longitude, in different dates
and weather conditions. Each image is split into imagetederb the calculation of respective wind
direction vectors. In Figurg(a), one imagette corresponds to approximately one quadidme image,
from which a direction vector is calculated for each metHaothgettes are 250 x 250 pixel submimages
from the SAR images and we use a total of 41 imagettes.

For an easier reading of Figubewe label the methods numerically such as: (1) UWT with tridag
base, (2) UWT withBs-spline, (3) UWT with Gabor, (4) UWT with Mexican-hat, (5) WDWa(®B) LG
and (7) QuikSCAT. This figure illustrates the wind directiosing each of the 7 methods for 3 SAR
images, containing a different number of valid imagettesheal'he color of direction vectors can be
blue (B), green (G), yellow (Y), magenta (M) and white (W), ahdyt are related to the method, by
using the numerical identifiers pointed out above. As an gtenthe code G:1, indicates green arrows,
which represent the wind direction calculated using me{tigdNotice that each row of Figuteshows
the same SAR image, but with arrows representing the wirettdon result of different methods over 1
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Figure 5. Wind direction vectors from 3 different SAR images: (a-c) RAMRSAT-1 SAR
image, on September 29, 2006, (d-f) ALOS PALSAR image, oy 20l 2007 and (g-i)
ENVISAT ASAR image, acquired on February 01, 2005. White\asrondicate the ground-
truth value, from QuikSCAT in all images; color-method asations appear on the label of

each image.

(d) G:1,B:2,W:7 (e)B:2,Y:3,M:4,W:7 (f) B:2,Y:5,M:6,W:7

(9) G:1,B:2,W:7 (h) B:2,Y:3,M:4,W:7 () B:2,Y:5,M:6,W:7

imagette. Tabl@ presents the mean and standard deviation of wind direatiothé different methods
and bold numbers for those that are closer to the QuikSCATegalu
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In order to evaluate the results of the spectral algoritheer dlie detail images obtained from the
wavelet decompositions, we adopt the following empiricalgmeters: the Gabor wavelet uses:=
o, =6.95, { = 3.14 andy, =0, tuned according to the dimension of the streaks (200 to mg®0 our
dataset. The Mexican-hat wavelet uses parameset to0.37, which resulted in noisy suppression and
streak recovery.

Before comparing the wind fields between the scatterometkites SAR-derived results, we filter
the input data following the criteria: (a) removal of raiontaminated areas due to scatterometer data
to be less accurate in such circumstances and (b) totalayvefithe scatterometer resolution celb (
km) within the given SAR scenelp]. Although SAR images are independent of weather, raingsare
in scatterometer data can result in erroneous cross tratrgeand/or incorrect high speed valu26]|[
Furthermore, we separate the imagettes in two groups, diogoto the speed values from QuikSCAT:
(a) data set consisting of all 41 imagettes (b) data set stmgiof only imagettes with wind speeéds

Table 2. Wind direction results to be compared with QUikSCAT measures

FFT WDWaT | LG
. atrous . )
SAR images| Measures Gabor Hat Haar | Gradient| QuikSCAT
Triangular  Bs-spline

Mean () 3526 3062 270 287.66] 3550 | 294 314.2
2003/06/14| g1y dev.{y| 03 21 0 204 | 58 48 2.6

Mean () 3343 3285 2700 180.84] 3350 | 2643 | 2775
2006/09/26

Std. dev.{) | 222 1.9 0 1691| 58 10.4 10.4

Mean () 322.6 3163 2790 311.61] 2950 | 2794 | 3165
2006/09/29

Std.dev.{) | 111 007 106 2.3 57 47 0.0

Mean () | 27576 24633 272.33 22512 303.33 | 27046 | 2595
2001/02/03 | o1 gev.{) | 58.26 15.84 7696 7.42| 56.86 | 0.09 259

Mean ¢) | 32857 327.99 327.53 321.67 190 | 27035 | 2925
2001/02107 | o4 dev.ty | O 0 0 0 0 0 0

Mean () 270 27553 360 270 | 360 | 241.89 | 2835
20051129 g4 dev.ty | O 0 0 0 0 0 0

Mean () 252.66 290.39 317.03217.28 280 254.84 2355
Std. dev.f) | 152.9 6.13 46.03 13.94 | 58.06 11.33 5.01
Mean () 284.51 284.83 237.83 325.74 2875 309.49 282

Std. dev.f) | 1.18 1.22 64.8 1.77 39.55 40.95 7.94
Mean () 316.58 286.04 270 326.54 240 241.81 268.5

2007/01/04

2005/02/01

2007007120 o gev.ty | 4725 930 0  1.30| 4243 | 2173 | 6.36
Mean ¢) | 29444 33556 270 264.92] 230 | 209.79 | 3285
2008/06/06
Std. dev.{) | 1657 1657 0  7359| O 8.59 0
Mean ¢) | 342.17 34034 315 321.89| 320 | 224.99 | 330
2009/07/25
Std. dev.{) | 437 419 6364 14 | 2828 | 1534 0

Mean () 344.64 285.99 270 243.2 340 263.75 282.75

2009/08/23| g4 gev.{)| 04 131 0  37.89| 2828 | 6.05 1.06
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Figure 6. [ R24 ]Comparison between QuikSCAT (abscissa) and SAR-based n&etbhod
dinate) for two data sets: (a, c, e, g) after removing the ¢onfidence (rain cells) from
QuikSCAT data and (b, d, f, h) regions with wind speeds less tha:s!; the FFT meth-
ods differ from their wavelet decompositiorestrous, triangular base (a, B)t{rousBs-spline

(c, d), Mexican-hat (e, f) and Gabor (g, h).
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10ms~! (32 imagettes).

After calculating the wind direction over each imagette iNustrate the direction from each imagette
against its correspondent QuikSCAT value in Fig@reln this figure, imagettes wind vectors appear
in blue crosses and QuikSCAT-rain flagged regions in blacleb@s neglected data. The main range
of wind direction variation is highlighted by dashed lin€3ur results (see Tab® are consistent with
wind directions in the northern coastline of Rio Grande dotdlddortheastern Brazil (around 3§ and
5°S), where the wind blows from East during August to April, dram Northeast during May to July
[39]. Indeed, the predominant wind direction in this area isrfi&ast and according to the geographic
convention it is expected to be between 2028d 292.5. In addition, Oliveiraet al. [39] also reported
that from March to June, the mean wind speed is expected toghe 4! while between August and
December, the winds are expected to be stronger (around9:6).

We use statistical descriptors as the bias, root mean sgquarg RMSE), correlation, standard devia-
tion, mean and maximum values in TaBlgo interpret the goodness-of-fit among the spectral method
showed in Figuré®. Bold numbers indicate high correlation and low RMSE occuregsimultaneously,
an indicator of agreement between the spectral method af@uikSCAT output. Based on such analy-
sis, we notice that the spectral methods presented bestpenfice, particularly for imagettes with wind
speeds up to 1s .

Certainly, the 2-D Mexican-hat wavelet characteristics@#tinuity and axis symmetry have played
an important role in extracting structures as streaks. ieithod detects the highest and lowest backscat-
ter structures in the SAR images, providing the best regutisr experiments. Also, we observe that the
a trous wavelet transform decomposition with-spline base function achieves comparable results to
the 2-D Mexican-hat results. TabBeshows that it outperforms the other methods regarding the RMS
and correlation measures, particularly for data set withdnspeeds up to 16:s~!. Wind directions
estimated by this method are highly correlated (0.61) withkQCAT data and thus present the lowest
RMSE (31.18) and standard deviation (2331

Table 3. [ R24 [Statistical parameters of the comparison of the scattgrghlown in Figure

6.

Total data set (41 imagettes) Only imagettes with wind speed values< 10ms—1!
Measures Triangular Bs-spline  Gabor Hat | Triangular Bs-spline Gabor Hat
bias ¢) 19.75 17.01 -0.13  -12.24] 19.90 16.39 -1.82 -10.25
RMSE ) 72.13 31.15 60.68 63.66 82.60 31.24 69.00 38.82
correlation 0.35 0.57 -0.11 0.47 0.35 0.61 -0.22  0.62
std. dev. {) 73.92 24.57 49.24 70.61 85.50 23.31 53.22 47.44
mean {) 301.39 298.65 281.50 269.39 298.23 294,71  276.51 268.07

)

maximum () 353.54 347.28 360 328.28 353.39 347.28 360 327.4

QUuUikSCAT parameters

mean () 281.63 278.33
std. dev. {) 30.54 33.50
maximum () 330 328.5
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Figure 7. [ R24 ]Comparison of wind speed retrieval results and QuikSCATtsoatineter
winds. (a, ¢, e) Wind direction estimated by the FFT methadguBs-spline function. (b, d,
f) Wind direction estimated by the FFT method using Mexitat function.
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The Gabor wavelet transform combined with the spectral oweterforms poorly in comparison
with other methods if we look at the bias, RMSE and correlataanshown by Tabl8. Notice that the
estimated directions are low correlated (-0.11 and -0.2&) @QuikSCAT and the RMSE values (6068

and 69) indicate that the Gabor function misses most of the stregiems from SAR images.

In accordance to the results reported by Fichaux and Ran8hirihe a trous wavelet transform
decomposition with a triangular base function, performd imeareas of high wind speeds (above 9-10
ms~ ') and it is less efficient when performed in areas of low to nmattewind speeds (4<@s~1).

From now on, our investigation focus on the two best speatethods:a trous withBs-spline and
Mexican-hat. We use wind direction results of these two w@shas the inputs to CMOD models for
wind speed estimation. Thus, for each imagette we compar€MOD results with the corresponding
QuikSCAT speed data.
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Figure7 and Table4 provide data to compare RADARSAT-1 and QuikSCAT wind speedsdedn
low wind speeds, secondary factors can affect the backsdatim the ocean such as meteorological
phenomena and oceanic phenomena, causing backscattariatons for the same wind intensit{d].
The largest differences between the 3 C-band models occlindispeeds above 10s~!. At moderate
wind speeds they agree fairly well. The CMOD-IFR2 and CMODS5 nidee very similar to each other.
The main difference occurs at very high wind speed®ms~!, where CMOD5 estimates higher winds
[13].

We perform the experiments by using the best wind directgsults as inputs to C-band models to
reduce estimate errors. In areas of low to moderate winddspibe approximation of estimated speeds
and QuikSCAT data was better for CMOD4 with the lowest RMSE v&lde34ms~—! and 0.99ms™1).
Table4 displays the estimated speeds with CMODA4 for the RADARSAT-1 S#fdard images. They
are highly correlated (0.79 and 0.9) with QuikSCAT data.

The comparison with respect to the different CMOD models régpmed using the wind directions
resulting from the FFT algorithm with trous waveletB;-spline) and FFT algorithm with Mexican-hat
wavelet. In this paper, we apply theéR model called Elfouhaily scattering to estimate the NRCS for
SAR images with the HH polarization, as suggestedirj.[ Such a model allows estimation of wind
speed in fairly agreement with wind speed values at seveztdonological observation stations. Talile
displays that CMOD4 outperformed the other C-band based madelcerning RMSE and correlation
values. Itimplies that the estimated speed values are tidbe QuikSCAT values. At low to moderate
wind speed values, CMOD4 is the best choice to retrieve SARIwseed in high resolution SAR
images acquired at C-bangd]. However, especially at high wind speed, CMOD4 undereseémthe
wind speeds significantly. Also CMOD-IFR2 and CMOD?5 outputé&egistimations at high wind speed
values, but still underestimate the wind spe&8|.[

Table 4. [ R24 ]Statistical parameters of the comparison of the scattgrgblown in Fig7.

Bs-spline Mexican-hat

Measures CMOD-IFR2 CMOD4 CMOD5| CMOD-IFR2 CMOD4 CMOD5
bias (ns™1!) 0.79 0.12 0.64 0.63 0.06 0.68
RMSE (ns™!) 1.75 1.34 1.71 1.34 0.99 1.26
correlation 0.72 0.79 0.69 0.85 0.90 0.87
std. dev. (ns™1) 2.06 2.05 1.91 2.17 2.29 2.09
mean (s 1) 9.71 9.05 9.57 9.56 8.98 9.60
maximum (ns—1) 11.33 10.87 10.97 11.61 11.07 11.48

QUIkSCAT parameters
mean (s 1) 8.92
std. dev. fns™!) 211
maximum (ns—1) 11.2
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5. Conclusions

We proposed a framework to retrieve wind direction from RADARE and ENVISAT ASAR im-
ages acquired with HH polarization in transmitting and ndog at C-band and from ALOS PALSAR
images collected at L-band and with HH polarization. Windesjs were retrieved from RADARSAT-1
images using an empirical model that gives the dependenityedRCS on wind speed, wind direction
and incidence angle. The model was developed for the ERS-1 8@&hting at C-band with VV polar-
ization, and was extended to HH polarization by consideaimgncidence-angle-dependent polarization
ratio.

Our algorithm decomposed images by applying undecimategiets and Fourier transforms to es-
timate direction of the prevailing winds in SAR images. Thwel steps encompassed the Gabor and
Mexican-hat undecimated wavelet transforms to derivelldetages. The performance of the algorithms
was compared with the LG and WDWaT methods. Furthermore, seeialplemented a standard and
widely-used spectral method in the literature, with a défe scaling function, thé;-spline, obtaining
better results, given the wind speed range under inspection

The Mexican-hat wavelet and tketrous algorithm withBs-spline results were similar when com-
paring with the others. The difference between the Mexitainwavelet and tha trous algorithm with
Bs-spline relies on the fact that the former enhances thelspatierns, as well as the latter, but it also
enhances undesirable noise and small-scale fluctuatioas dériving wind fields from SAR images.
It is a particular characteristic of the Mexican-hat watelBoth methods performed similarly when
discharging imagettes containing wind speed valuek) ms~!. In this case, the algorithms achieved
the lowest RMSE and the highest correlation values. Our tigaggons suggested that it was accom-
plished by the multiscale blurring effect, provided by tBg-spline and Mexican-hat wavelet bases,
which reduced undesirable noise, and small-scale surtagghness, in the range of low to moderate
wind speeds. In addition, this blurring effect preserveduvant information (e.g. streaks) for direc-
tion estimation for several scales. Our results suggebtdhie wavelet coefficients, obtained with the
Bs-spline base function, were more suitable to characterine-mduced streaks oriented in the wind
direction in scales higher than 2@@. It means that tha trous decomposition with triangular function
in low to moderate wind speed areas is more sensitive to ssoalé roughness thaB;-spline base
function, as we expected.

We noticed that speckle noise caused small-scale fluchsatibthe backscatter to the SAR images.
This motivated our tuning of th&;-spline and Mexican-hat functions to extract wind-induseé@aks
and discharge surface small-scale intensity variationg. néticed that the proposed method reduces
speckle noise when applied to multi-look SAR images. Theloation of smoothing effect and multi-
look processing, with streak pattern enhancement for wiglddiestimation, improved the algorithm
accuracy. Due to the ability of these masks to smooth variatof intensity at small-scales, the perfor-
mance of the algorithm was superior in areas of low to modesatd speeds in comparison with areas
of high wind speeds. On the other hand, we observed that thyenf the Gabor wavelet function
could have been tuned differently, probably giving moreuaate wind direction estimates if considering
a more extensive exploration of the parameters for betigmralent to the streak patterns.

Further developments will include a larger data set to ataldhe performance of the proposed
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method for wind field estimation for different areas of therldo Preliminary tests show that SAR
images of hurricanes in the Pacific Ocean could be deteciad tlee proposed algorithm. We might
extend the algorithms to application to images from stohmsiicanes, typhoons and oil spill detection.
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